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ABSTRACT

High-performance parallel file systems (PFSes) are of prime im-
portance today. However, despite the importance, their reliability
is much less studied compared with that of local storage systems,
largely due to the lack of an effective analysis methodology.

In this paper, we introduce PFAULT, a general framework for
analyzing the failure handling of PFSes. PFAULT automatically emu-
lates the failure state of each storage device in the target PFS based
on a set of well-defined fault models, and enables analyzing the
recoverability of the PFS under faults systematically.

To demonstrate the practicality, we apply PFAULT to study Lustre,
one of the most widely used PFSes. Our analysis reveals a number
of cases where Lustre’s checking and repairing utility LESCK fails
with unexpected symptoms (e.g., I/O error, hang, reboot). Moreover,
with the help of PFAULT, we are able to identify a resource leak
problem where a portion of Lustre’s internal namespace and storage
space become unusable even after running LFSCK. On the other
hand, we also verify that the latest Lustre has made noticeable
improvement in terms of failure handling comparing to a previous
version. We hope our study and framework can help improve PFSes
for reliable high-performance computing.
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1 INTRODUCTION

Storage systems must handle failures (e.g., power outages, server
crashes, device errors) gracefully, which is difficult to achieve in
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practice. For example, recent studies have uncovered reliability
vulnerabilities at almost every layer of the local storage stack (e.g.,
devices [54], RAID [25], local file systems [27]). This raises the
concern for PFSes (e.g., Lustre [23], OrangeFS [46]) building on top
of the local storage stack, which are responsible for managing much
larger volumes of data in many high-performance data centers.

In fact, in a recent incident at the High Performance Comput-
ing Center (HPCC) in Texas [16], the storage clusters managed
by Lustre file systems suffered severe data loss after power out-
ages [19]. Although many files have been recovered after months
of manual efforts, there is still critical data lost permanently, and
the potential damage to the scientific discovery is unmeasurable.
Similar failure events have been reported in other recent studies
on large-scale production systems [14]. In an effort to identify the
potential vulnerabilities in Lustre and its repair utility LESCK, and
to improve the reliability of PFSes in general, we introduce PFAULT,
a general framework for analyzing the failure handling of PFSes, in
this paper.

There are two major challenges. The first one is how to gener-
ate faults at scale in a systematic and controllable way. Manually
unplugging the power cord for thousands of times is simply im-
practical. The second challenge is the complexity. Even a local file
system may consist of many tens of thousands of lines of kernel-
space code. Adding a global layer across many already-complicated
local systems makes analyzing the whole system behavior difficult.
Moreover, PFSes may have strong dependency on local systems. For
example, Ext4 is patched for Lustre’s 1diskfs backend [24], while it
is unusable for Ceph OSD Daemons [44].

To address the challenges, we make two key observations. First,
failure events may vary, but only the on-drive persistent states may
affect the recovery after rebooting. Therefore, we boil down the
generation of various failure events to the emulation of the device
state on each node.

Second, despite the complexity of PFSes, we can always sep-
arate the whole system into a global PFS layer across multiple
nodes, and a local system layer on each individual node. More-
over, the local system layer can be largely decoupled from the rest
of the system through remote storage protocols (e.g., iSCSI [45],
NVMe/Fabric [32]), which have already been used in large-scale
storage clusters for easy management of storage devices. In other
words, by emulating the failure state of each individual node via
remote storage protocols, we enable analyzing different PFSes with
little disturbance and porting effort.

Based on the ideas above, we build a prototype of PFAULT on
top of a customized iSCSI driver. PFAULT first creates a virtual de-
vice on each storage node of the target PFS via iSCSI, and then
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manipulates the backing stores to emulate the failure states on vir-
tual devices under certain workloads and fault models. We explore
a wide set of failure events that need to be handled properly in
practice, and summarize them into three fault models: whole device
failure, global inconsistency, and network partitioning. After emulat-
ing failure states, PFAULT invokes the checking and repairing utility
of the PFS as well as a set of customized workloads to examine the
recoverability of the target PFS.

To demonstrate the practicality, we apply PFAULT to analyze Lus-
tre [23], one of the most widely used PFSes in high-performance
computing facilities. We find that LFSCK, the checking and repair-
ing utility of Lustre, may behave abnormally under different faults
(e.g., hang, fail to start, or trigger the rebooting of storage nodes).

Moreover, with the help of PFAULT, we are able to find that a
portion of Lustre’s internal namespace as well as the storage space
may become unusable after faults, which we refer to as a resource
leak problem. The leaked resource cannot be detected or reclaimed
by LFSCK. To address the problem, we build a simple tool called
LeakCK, which can detect leaked internal data files of Lustre based
on their reachability from the client.

In addition, we find that Lustre and LFSCK generate extensive
logs for diagnosing the system behavior under faults. While many
logs are accurate and informative, some others are not. Such status
implies that detecting and handling failures properly in large-scale
PFSes remains a challenging task. By releasing the prototype [1],
we hope PFAULT can help improve Lustre as well as other PFSes for
reliable high-performance computing.

The rest of the paper is organized as follows. In §2, we introduce
the background. In §3, we describe the design and implementation
of PFAuLT. We present our analysis of Lustre in §4. Finally, we
discuss related work (§5) and conclude (§6).

2 BACKGROUND

2.1 Parallel File Systems

Parallel file systems (PFSes) are designed for high-performance
computing (HPC) in a well controlled environment, which leads
to an architecture different from other distributed storage systems
(e.g., HDFS [15]). For example, PFSes are optimized for highly con-
current accesses to the same file, and they heavily rely on hardware
like RAID [33] to protect data against failure events. Although tra-
ditionally high performance is the most desired metric of PFSes,
high reliability is also becoming increasingly important as more
and more critical data are kept in various PFSes today.

The goal of PFAULT is to help improve the failure handling of
PFSes by systematically emulating faults and facilitating post-fault
analysis. To this end, we use Lustre[24], one of the most widely used
PFSes, as an example to apply PFAULT in this work. Lustre dominates
the market share of HPC centers [18], and more than half of the
top 100 supercomputers use Lustre [47]. Similar to other PFSes, a
Lustre file system usually includes the following components:

e Management Server (MGS) and Management Target
(MGT) manages and stores the configuration information of
Lustre. Multiple Lustre file systems in one cluster can share
the MGS and MGT.

e Metadata Server (MDS) and Metadata Target (MDT) man-
ages and stores the metadata of Lustre. MDS provides net-
work request handling for one or more local MDTs. There
can be multiple MDSs and MDTs since Lustre v2.4. Also,
MGS/MGT can be co-located with MDS/MDT.

e Object Storage Server (OSS) and Object Storage Target
(OST) manages and stores the actual user data. OSS provides
the file I/O service and the network request handling for
one or more local OSTs. User data are stored as one or more
objects, and each object is stored on a separate OST.

e Clients launch applications to access the data in Lustre,
usually from login nodes or compute nodes.

Although Lustre is optimized for the HPC environment, main-
taining consistency and data integrity under faults is becoming
more and more desirable as the scale and complexity increases. To
this end, Lustre includes a failover feature, which allows MDS/OSS
to continue execution on a standby node after crashes. Moreover,
Lustre introduces an online utility called LFSCK [21] for check-
ing and repairing itself after faults, which has been significantly
improved since v2.6.

A typical deployment of Lustre may include one MGS node, one
or two dedicated MDS node(s), and two or more OSS nodes, as
shown in Figure 1. We follow such setting in our experiments (§4).

2.2 Remote Storage Protocols

Remote storage protocols (e.g., NFS [38], iSCSI [45], Fibre Chan-
nel [36], NVMe/Fabric [32]) enable accessing remote storage devices
as local devices, either at the file level or the block level. In partic-
ular, iSCSI[45] is an IP-based protocol allowing one machine (the
initiator) to access the remote block storage through the internet.
To everything above the block driver on the initiator, iSCSI is com-
pletely transparent. In other words, file systems can be built on
iSCSI devices without any modification.

Compared to other protocols, iSCSI does not require special
hardware (unlike Fibre Channel), works at the block level (unlike
NFS), and is mature (unlike NVMe/Fabric). Therefore, in this work
we use iSCSI to decouple the major components of PFAULT from
the target system, which minimizes the disturbance and enables
testing different parallel file systems with little porting effort.

3 DESIGN AND IMPLEMENTATION
OF PFAULT

3.1 Overview

Figure 1 shows the overview of PFAULT and its connection with a tar-
get PFS under analysis. We use Lustre as an example of PFS, which
includes three types of storage nodes (i.e., MGS/MGT, MDS/MDT,
0SS/OST) as described in Section 2.1.

There are four major components in PFAULT: (1) the Virtual De-
vice Manager mounts a set of virtual devices to the storage nodes
via iSCSI, and forward all disk I/O commands to the backing files;
(2) the Failure State Emulator manipulates the backing files and
emulates the failure state of each virtual device based on the work-
loads and fault models; (3) the PFS Worker launches workloads to
exercise the PFS and generate I/O operations; (4) the PFS Checker
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Figure 1: Overview of PFAULT. The shaded boxes are the major components of PFAULT: (1) Virtual Device Manager mounts virtual devices to
the storage nodes of the PFS via iSCSI; (2) Failure State Emulator emulates failure states under certain workloads and fault models; (3) PFS Worker
exercises the PFS and generates I/O operations; (4) PFS Checker examines the recoverability of the PFS.

invokes the checking and repairing utility of the PFS and a set of
verifiable workloads to examine the recoverability of the PFS.
Note that although Figure 1 uses Lustre as an example, the frame-
work can be applied to other PFSes with little porting effort by
installing the corresponding software on the virtual devices.

3.2 Virtual Device Manager

The state of the target PFS depends on the I/O operations. To capture
all I/O operations in the PFS, the Virtual Device Manger creates
and maintains a set of backing files, each of which is corresponding
to one storage device used in the storage nodes. The backing files
are mounted to the storage nodes as virtual devices via the iISCSI
protocol [45]. Thanks to iSCSI, the virtual devices are just ordinary
local disks from the PFS’ perspective. In other words, PFAULT is
transparent to the PFS under analysis.

All T/O operations in the PFS are eventually translated into low-
level disk I/O commands, which are transferred to the remote Vir-
tual Device Manager via iSCSI. The Virtual Device Manager updates
the content of the backing files according to the commands received
and satisfies the I/O requests accordingly.

3.3 Failure State Emulator

To analyze the failure handling of the PFS, it is necessary to generate
faults in a systematic and controllable way. To this end, PFAULT
reduces various failure events to the states of virtual devices via
the Failure State Emulator. Specifically, for each storage node with
a virtual device, PFAULT manipulates the corresponding backing
file and the network daemon based on a set of fault models. The
current prototype of PFAULT includes three representative fault
models defined as follows:

(a) Whole Device Failure (a-DevFail). This is the case when a
storage device becomes inaccessible to the PFS entirely, which can
be caused by a number of reasons including RATD controller failures,
firmware bugs, accumulation of sector errors, etc [2, 25, 54].

Since PFAULT is designed to decouple the PFS from the virtual
devices via iSCSI, we can simply log out the virtual devices to
emulate this fault model. More specifically, PFAULT uses the logout
command in the iSCSI protocol (§2.2) to disconnect the backing
file to the corresponding storage node, which makes the device
inaccessible to the PFS immediately.

(b) Global Inconsistency (b-Inconsist). In this case, all storage
devices are still accessible to the PFS, i.e., the I/O requests from the
PFS can be satisfied normally. Also, the local file system (e.g., Ext4)
on each storage node is consistent. However, the global state of the
PFS, which consists of all local states, is inconsistent from the PFS’
perspective.

Because PFSes are built on top of local file systems, it seems
unreasonable to expect a PFS to behave properly when a local file
system is broken. Therefore, in this model we intentionally enforce
that each local file system must be consistent. Such scenario (ie.,
local file systems are consistent, but the global state is incorrect)
may also be caused by a variety of reasons. For example, in a data
center-wide power outage [19], the local file systems on individual
storage nodes may be corrupted to different degrees depending on
the local I/O operations at the fault time. Therefore, it is necessary to
check and repair the local file systems first [21]. Since the local file
system checker (e.g., e2fsck [50] for Ext4) only has the knowledge
of its own metadata consistency rules, it can only fix the local
inconsistencies on a single node, and thus expose a potentially
inconsistent global state to the PFS. Besides power outages, local
file systems may be corrupted for other reasons such as file system
bugs, latent sector errors, etc [2, 35, 54]. While running a local file
system checker may bring the local file system back to a consistent
state, it may (unintentionally) break the global consistency rules due
to its local repair operations (e.g., skipping incomplete local journal
transactions, moving a local file to the “lost+found” directory). As
a result, the global consistency across nodes may be compromised.

To emulate this fault model, PFAULT first invokes the debug
tool of the local file system (e.g., debugfs [10] for Ext4 and xfs_db
for XFS) to manipulate the local states on selected nodes. These
debug tools allow “trashing” specific metadata structures of the
local file system for regression testing. We make use of such feature
to corrupt the local file systems. After introducing local corruptions,
we invoke the checking and repairing utility of the local file system
to repair any local inconsistencies.

Moreover, after repairing the local file system, we compare it
with the original local file system (before corruption). This is to
verify if the repaired local state is different from the original state.
If it is different, then we have successfully generated a different but
consistent local file system. PFAULT remounts this new local file
system to the PFS to create an inconsistent global state.



(c) Network Partitioning (c-Network). Network partitioning is
a typical failure in large-scale networked systems, which may be
caused by dysfunctional network devices (e.g., switch) or hanging
server processes among others [29]. When the failure happens,
the cluster splits into more than one “partitions” which cannot
communicate with each other.

To emulate this effect, PFAULT disables the network card(s) used
by the PFS on selected nodes through the network daemon, which
effectively isolates the selected nodes to the rest of the system.

Summary & Expectation. The three fault models defined above
represent a wide range of real-world failure scenarios [2, 3, 25, 29,
30, 39, 43, 53, 54]. By emulating these models automatically, PFAuLT
enables analyzing the failure handling of the target PFS thoroughly.
Since there are usually multiple types of storage nodes in a PFS, a
failure may affect the PFS in different ways depending on the types
of nodes affected. Therefore, PFAuLT allows specifying which types
of nodes to apply the fault models through a configuration file.

Note that in all three models, we intentionally avoid introducing
inconsistencies at the local file system level. However, it is straight-
forward to extend PFAULT to emulate more aggressive scenarios
with inconsistent local file systems We leave emulating other fault
models as future work.

Also, since many PFSes are optimized for high performance, it
is perhaps acceptable if the target PFS cannot function normally
when experiencing these faults. However, we expect the failure
handling utility of the PFS (e.g., LFSCK for Lustre) to be able to
detect the potential issues and response properly.

3.4 PFS Worker

Comparing with a fresh file system, an aged file system is more
representative [8, 42], and is more likely to encounter issues under
faults due to the more complicated internal state. Therefore, the PFS
Worker invokes data-intensive workloads (e.g., unmodified HPC
applications) to age the target PFS and generate a representative
state before injecting faults. Internally, the PES distributes the I/O
operations to storage nodes, which are further transferred to the
Virtual Device Manager as described in §3.2.

Besides unmodified data-intensive workloads, another type of
useful workloads is customized applications specially designed for
examining the failure handling capability of the PFS. For example,
the workload may embed checksums in the data written to the PES,
which can help identify the potential corruption of user files from
the end user’s perspective without relying on the reports of the
PFS. We include examples of both types of workloads in §4.

3.5 PFS Checker

Similar to local file systems, maintaining consistency and data
integrity is critical for large-scale file systems. Therefore, most
multi-node file systems include a checking and repairing utility to
serve as the last line of defense against global inconsistencies (e.g.,
LFSCK [21], Ceph FSCK [44]).

The PFS Checker component invokes the checking and repairing
utility of the target PFS to recover the PFS after injecting faults.
In addition, the PFS Checker also invokes customized checking
workloads to access the recovered PFS, and examines the PFS’ re-
coverability from the end user’s perspective based on the responses

of the workloads. We also include examples of customized checking
workloads in §4.

4 CASE STUDY: LUSTRE FILE SYSTEM

4.1 Experimental Methodology

We have built a prototype of PFAULT and applied it to study Lustre.
Two platforms were used for the experiments: (1) a seven-node
cluster created on virtual machines hosted on our private servers;
(2) a twenty-node cluster created on CloudLab [7], where the exper-
imental profile is publicly available [49]. All results were collected
using the first platform for convenience, and a subset with unex-
pected symptoms (e.g., hang, rebooting, resource leak) has been
repeated and verified using the CloudLab profile.

In the seven-node cluster, one node was used for hosting the
Virtual Device Manager and Failure State Emulator of PFAuLT, and
another node was used as a login/compute node to host PFS Worker
and PFS Checker and launch workloads on behalf of clients. The
remaining five nodes were dedicated to the PFS as storage nodes.

On the five storage nodes, we created a Lustre file system with
one MGS node, one MDS node, and three OSS nodes. On each node,
there was one virtual device mounted to serve as the corresponding
target device (i.e., MGT/MDT/OST).

First, we designed a set of workloads to analyze Lustre’s failure
handling from the end user’s perspective (e.g., whether a program
finishes normally or not). We find that the behavior of LFSCK varies
a lot under different faults (§4.2).

Next, we discovered a resource leak problem where a portion
of the internal namespace as well as the storage space on OSTs
becomes unusable by Lustre even after running LEFSCK. We discuss
the problem as well as our tool for detecting the leak in §4.3.

Finally, we collected the extensive logs generated by Lustre and
LFSCK during the experiments. We find that some log messages
are accurate and informative, but some others are not. We analyze
the logs in details in §4.4 and §4.5.

We have analyzed two versions of Lustre in our experiments. The
latest version when we started our study was v2.8. All results and
analysis in §4 are based on v2.8, unless stated otherwise. Besides,
we have repeated the same experiments on the latest v2.10. We
describe both versions in §4.2 and §4.3. However, we have not
finished analyzing the logs of v2.10 at the time of writing due to
the extensive volume. Therefore, the log analysis in §4.4 and §4.5
only represents the logging mechanism of v2.8. Overall, we find
that v2.10 has made noticeable improvement over v2.8 in terms of
failure handling.

4.2 Behavior of LFSCK

In this section, we present the behavior of LFSCK as perceived by
the end user when checking and repairing Lustre after faults. We
defer the detailed analysis of Lustre’s and LFSCK’s internal debug
logs to §4.4 and §4.5. Also, we apply a set of workloads after LFSCK
to further verify the effectiveness of LESCK. While we do not expect
Lustre to function normally after the faults, we expect LESCK to be
able to detect the potential issues.

4.2.1 Workloads. Table 1 summarizes the workloads used
in the experiment. create+write+delete is a set of common file



Workload [ Description Purpose
create+write+delete create, write, & delete files age Lustre
Montage-m101 an astronomical image mosaic engine age Lustre
Wikiw-init write an initial set of Wikipedia files (w/ known MD5) generate verifiable data
WikiR read the initial Wikipedia files & verify MD5 analyze post-LFSCK behavior
WikiW-async write new files asynchronously, read back & verify MD5 | analyze post-LFSCK behavior
WikiW-sync write new files synchronously, read back & verify MD5 | analyze post-LFSCK behavior

Table 1: Workloads Used in PFAULT for Analyzing Lustre and LFSCK. create+write+delete and Montage-m101 are used for aging Lustre;
WikiW-init writes a verifiable set of Wikipedia files for fault injection; the other three workloads (i.e., WikiR, WikiW-async, WikiW-sync) are

used for analyzing the behavior of Lustre after LFSCK from the end user’s perspective.

Node(s) Affected l Fault Models LFSCK  WikiR WikiW-async WikiW-sync
a-DevFail normal v v v
MGS b-Inconsist normal v v v
c-Network normal v v v
a-DevFail Invalid  hang hang hang
a-DevFail (v2.10) | I/Oerr I/Oerr I/O err I/O err
MDS b-Inconsist normal v v v
c-Network I/Oerr hang hang hang
c-Network (v2.10) | hang hang hang hang
a-DevFail hang hang hang hang
a-DevFail (v2.10) | normal v v v
OSS#2 b-Inconsist reboot  corrupt hang hang
c-Network hang hang hang hang
a-DevFail hang hang hang hang
three a-DevFail (v2.10) | normal v hang hang
OSSes b-Inconsist reboot  corrupt hang hang
c-Network hang hang hang hang
a-DevFail Invalid  hang hang hang
MDS a-DevFail (v2.10) | I/Oerr T/Oerr I/O err 1/0 err
+ b-Inconsist reboot  corrupt hang hang
OSS#2 c-Network I/Oerr hang hang hang
c-Network (v2.10) | hang hang hang hang

Table 2: Response of LFSCK and post-LFSCK Workloads. The first column shows where the faults are injected. The second column shows
the fault models applied (v2.10 means applying to Lustre v2.10). “normal”: LFSCK finishes normally; “reboot”: at least one OSS node is forced to
reboot; “Invalid”: an “Invalid Argument” error; “V/O err”: an “Input/Output error”; “hang”: cannot finish within one hour; “v'”: complete w/o error;
“corrupt”: checksum mismatch. The bold font highlights the unexpected response of LESCK.

operations (i.e., creating files, writing files, and deleting files) for
aging the Lustre under testing. Montage-m101 is a classic HPC
application for creating astronomical image mosaics [28], which is
also used for bringing Lustre to a representative state. The runtime
of the aging workloads is tunable through a script, and we age
Lustre for about one hour in all experiments.

The Wikipedia workloads (i.e., WikiW-init,WikiR, WikiW-async,
and WikiW-sync) use a dataset consisting of the archive files of
Wikipedia [51]. Each archive file has an official MD5 checksum for
verifying its integrity.

To emulate failure states, WikiW-init writes a known initial
set of archive files to Lustre. In the meantime, PFAULT generates
failure states under WikiW-init based on the fault models (§3.3).

By using MD5 checksums, we can verify the integrity of the initial
files without relying on the reports of Lustre or LFSCK.

After emulating failure states, we run LFSCK to check and repair
Lustre as it is designed to be an online tool. If LFSCK cannot fin-
ish within one hour (i.e., “hang”), we kill the LFSCK process. And
after LFSCK, we run WikiR, WikiW-sync, and WikiW-aync one by
one in sequence. WikiR reads the initial set of archive files, calcu-
lates the MD5 checksums, and verifies if the checksums match the
official values. This workload checks the behavior of read opera-
tions after LFSCK. WikiW-async writes new archive files to Lustre
asynchronously, reads the files back, and verifies the checksums.
This is to check if asynchronous write operations can be served
properly after LFSCK. Similarly, WikiW-sync checks the behavior
of synchronous writes.



4.2.2 Observations. Table 2 summarizes the response of LF-
SCK and the workloads after LFSCK. As shown in the first column,
we inject faults to five different sets of Lustre nodes: (1) MGS only,
(2) MDS only, (3) OSS #2 only, (4) all three OSSes, and (5) MDS and
OSS#2. For each set, we inject faults based on the three fault models
(§3.3). We add the behavior of Lustre/LFSCK v2.10 (i.e., “v2.10” lines)
when it differs from that of v2.8.

When faults happen on MGS (the “MGS” row), there is no user-
perceivable impact. LESCK finishes normally (“normal”) and all
workloads complete successfully (“v"”). This is consistent with Lus-
tre’s design that MGS is not involved in the regular I/O operations
after Lustre is built [24].

When faults happen on other nodes, however, LFSCK may fail
unexpectedly. For example, when “a-DevFail” happens on MDS (the
“MDS” and “MDS+OST#2” rows), LFSCK fails with an “Invalid Ar-
gument” error (“Invalid”) and all workloads cannot make progress
(“hang”) on v2.8. All these behaviors change to “Input/Output er-
ror” (“I/O err”) on v2.10, which is an improvement since “I/O err”
is closer to the root cause (i.e., a whole device failure).

When “a-DevFail” happens on OSS (the “OSS#2” row), v2.8 and
v2.10 differ a lot. On v2.8, LFSCK and all workloads hang. However,
on v2.10, LFSCK finishes normally, and all workloads succeed (i.e.,
“v"”). WikiR can succeed because it reads the initial files buffered in
the memory. We verify this by unmounting and remounting the file
system, which purges the buffer cache. After remounting, running
WikiR becomes “hang” (same as v2.8). This suggests that v2.10
has a more aggressive buffering mechanism compared with v2.8.
WikiW-sync and WikiW-aync can succeed because v2.10 skips the
missing OST and uses the remaining two OSTs for storing striped
data. We verify this by analyzing the internal data files on OSTs.
Comparing to the “hang” on v2.8, this is indeed an improvement.

When “b-Inconsist” happens on MDS (the “MDS” row), it is sur-
prising that LFSCK finishes normally without any warning (“nor-
mal”). LFSCK’s internal logs also show normal as we will see in
§4.5. However, by examining the internal files of Lustre, we find
that there is a resource leak problem under this scenario, which we
will dicuss in 4.3.

When “b-Inconsist” happens on OSS (the “OSS#2” row), running
LFSCK may trigger the rebooting of storage nodes unexpectedly
(“reboot”). Also, WikiR reports mismatched checksums (“corrupt”).
This is because OSTs store the striped data, “b-Inconsist” on OSTs
affects the internal data files, which is not detectable by LFSCK.

In summary, we observe several unexpected behavior of LEFSCK
(e.g., “Invalid”, “hang”, “reboot”). We also verify that v2.10 has made
noticeable improvement on failure handling compared to v2.8. We
analyze the behavior in more details through the logs generated by
Lustre and LFSCK in §4.4 and §4.5.

4.3 The Resource Leak Problem

4.3.1  Problem Description. In this section, we focus on a
special case observed in our experiments where a portion of the
internal namespace as well as the storage space on OSTs becomes
unusable by Lustre even after running LFSCK, which we refer to
as the resource leak problem. We observed the problem on both
Lustre v2.8 and v2.10.

Client

/lustre/usrfilel | read() at 10:09 <«—»,
/lustre/usrfile2 | read() at 12:19 <+—

e

/0/d0-o0st1 atime=00:00 /0/d0-0st2 atime=00:00
/0/d1-ostl atime=10:10 /0/d1-0st2 atime=10:11
/0/d2-ost1 atime=12:20 /0/d2-0st2 atime=12:21

metadata
on MDS

Internal object files on OST1  Internal object files on OST2

Figure 2: The Basic Idea of LeakCK. Touching user files retrieves
the mapping information from MDS and updates the access time
(atime) of the corresponding internal object files; LeakCK identifies
the unreachable internal object files based on the obsolete atime.

#of  Stripe Size Leaked Data | Detected
OSTs (KB) (MB) ?

1 64 100 Yes

1 128 200 Yes

2 128 200 Yes

2 256 400 Yes

3 256 400 Yes

3 512 800 Yes

Table 3: Effectiveness of LeakCK. LeakCK correctly detects the
resource leak (“Yes”) in six cases with different number of OSTs, stripe
sizes, and amount of leaked data.

The problem can be triggered by the following steps: (1) write one
300MB user file to Lustre synchronously (FileOne300MB); based on
the striping rule, internally Lustre generates a 100MB object file on
each of the three OSTs (d1-ost1, d1-ost2, d1-0st3); (2) corrupt
the local file system of MDT; run e2fsck to fix local inconsistencies;
(3) run LFSCK to check and fix global inconsistencies; (4) write
another 150MB user file synchronously (FileTwo150MB), read it
back and verify its checksum.

Essentially, the steps above emulate the global inconsistency fault
model described in 3.3, and belong to the “b-Inconsist" case under
WikiW-sync on MDS in Table 2, where LFSCK finishes normally
(“normal”) and WikiW-sync completes successfully (“v”).

After step (4), we observe that FileTwo150MB is written suc-
cessfully based on the checksum, while FileOne300MB becomes
invisible by the client. We examine the repaired local file system
on MDT, and find that the metadata belonging to FileOne300MB
has been cleaned by e2fsck for fixing the local corruption. In other
words, the status of MDT after e2fsck is equivalent to the status
without writing FileOne300MB. Since OSTs still hold the striped ob-
ject files of FileOne3@@MB, there is a global inconsistency between
MDT and OSTs from Lustre’s perspective. Therefore, we expect
LFSCK to be able to identify or fix such inconsistency.

However, by examining the internal files on the OSTs through
the local file systems, we find that LFSCK did not detect or recycle
d1-ost1, d1-ost2, d1-ost3, and Lustre cannot reuse the names



and space belonging to these object files. Instead, new object files are
created for FileTwo150M alongside d1-ost1, d1-ost2, d1-ost3.

We keep writing user files to Lustre until it reports “no space left”.
Then, we examine the internal object files of Lustre through the lo-
cal file systems again, and find that d1-ost1, d1-ost2,d1-ost3 still
exist. Since neither FileOne300MB nor d1-ost1,d1-ost2,d1-ost3
can be retrieved through Lustre or LFSCK, the internal names as
well as the storage space occupied by these object files become the
leaked resource.

In summary, we observe that the usable internal namespace and
storage space of Lustre may shrink after faults, and LFSCK is unable
to detect or fix the problem.

4.3.2 A Proposed Patch: LeakCK. To address the resource
leak problem, we design and implement a simple tool called LeakCK,
which is based on the observation that all “live” internal object files
should be reachable from client.

Figure 2 shows the basic idea. LeakCK first reads a user file (“/lus-
tre/myfile1”) and records the timestamp of the read (e.g., “10:09”).
Internally, the read operation retrieves the file mapping information
from MDS. Based on the mapping, the corresponding internal object
files on OSTs (“/0/d1-o0st1” and “/O/d1-0st2”) are accessed. Conse-
quently, the access time (“atime”) of the object files are updated
(e.g., “10:10” and “10:11”). The LeakCK subcomponents running
on OSSes collect and record the access time through the local file
systems. Based on the access time, LeakCK identifies the object files
belonging to the client-visible user file. In this way, LeakCK detects
all reachable object files, reports those unreachable as the potential
leak, and optionally move them to a “lost+found” directory.

One requirement of LeakCK is the synchronization of time across
nodes, which can be easily achieved by running a Network Time
Protocol (NTP) daemon (e.g., ntpd [31]). To tolerate the potential
latency, LeakCK always waits for a time period after checking the
internal object files corresponding to one user file. In this way, the
access time of object files belonging to different user files can be
separated accurately.

4.3.3 Effectiveness. To evaluate the effectiveness of LeakCK,
we create six resource leak scenarios using the four steps described
in §4.3.1. As shown in Table 3, the six cases vary in terms of the
number of OSTs involved, the stripe size, and the total amount of
leaked data. The stripe size and the number of OSTs for striping
are set via the 1fs setstripe command. The leaked data are
generated using the WikiW-sync workload (Table 1) followed by
the “b-Inconsist" fault on MDS. In all cases, LeakCK correctly reports
the locations and sizes of the leaked internal data files.

4.3.4 Limitations. Besides the striped internal object files
on OSTs, there may be other internal metadata files (e.g., object
index files) associated with obsolete user file, which may become
leaked as well. The current prototype of LeakCK only detects leaked
internal object files on OSTs, which are usually much larger than
the metadata files.

To detect all leaked resources, a detector would need the full
knowledge of the internal metadata structures and layout of Lustre,
which is out of the scope of this work. However, LeakCK’s approach
may be applicable to other PFSes as it treats the PFS as a black box
to a great extent.

4.4 Logs of Lustre

Internally, Lustre maintains a debug buffer and generates extensive
logs on various events, which provides a valuable way to analyze
the system behavior. After emulating the faults, we collect the
messages generated in the debug buffer of Lustre and summarize
them in Table 4.

As shown in Table 4, we observe eight types of error messages
(i.e., yI to y8) when faults are injected on different nodes, including
Disconnection (y1), Recovery failed (y2-y4), Log updating failed (y5),
Lock service failed (y6), and Failing over (y7,y8).

It is interesting to see that MGS only reports one type of mes-
sages(i.e., only yIin the “Logs on MGS” column), while MDS and
0SS nodes generate many types of messages. This is consistent with
Lustre’s design that MGS/MGT is mostly used for configuration
when building Lustre, instead of the core functionalities.

All three fault models can trigger extensive log messages. For
example, whenever “a-DevFail” happens on MDS (the “MDS” row),
all nodes can notice the disconnection (i.e., yI). Moreover, all OSSes
try to recover MDT but eventually fail (i.e., y3). This is because
the OST handler on each OSS node keeps monitoring the connec-
tion with MDT (via mdt_health_check), and automatically tries
to reconnect until timeout.

Also, “b-Inconsist” may generate various types of logs, depending
on different inconsistencies caused by different local corruptions.
When “b-Inconsist” happens on MDS (the “MDS” row), many ser-
vices such as logging (i.e., y5) and locking (i.e., y6) may be affected.
This is consistent with Lustre’s design that MDS/MDT is critical
for all regular operations.

Besides, when “a-DevFail” or “b-Inconsist” happens on MDS
or OSS, it may trigger the failover of the affected node (i.e., y7,
¥8). Because a complete failover configuration on Lustre requires
additional sophisticated software and hardware support [24], we
cannot evaluate the effectiveness of the failover feature further
using our current platform, and we leave it as future work.

However, we notice a potential mismatch between the docu-
mentation and the failover logs observed. Based on the documen-
tation [24], the failover functionality of Lustre is designed for
MDS/OSS sever processes instead of MDT/OST devices. For ex-
ample, two MDS nodes configured as a failover pair must share the
same MDT device, and when one MDS sever fails the remaining
MDS can begin serving the unserved MDT. Because “a-DevFail”
affects only the device (i.e., it emulates a whole device failure as
discussed in §3.3), and does not kill the MDS/OSS sever processes,
it is unclear how failing over server processes could handle the
device failure.

In summary, we find the messages in the debug buffer (if re-
ported) to be detailed and informative. As shown in the “Message
Example” of Table 4, the messages usually include specific file
names, line numbers, and function calls involved, which are valu-
able for understanding and diagnosing the system behavior. On the
other hand, some log messages may not directly reflect the root
cause of failures, which may imply that a more precise mechanism
for detecting faults is needed.



Node(s) | Fault Logson  Logs on Logs on Logs on Logs on
Affected | Models MGS MDS OSS#1 OSS#2 OSS#3
a-DevFail y1 y2 y2 y2 y2
MGS | b-Inconsist y1 y2,y5 y2,y5 y2,¥5 y2,y5
c-Network - y2 y2 y2 y2
a-DevFail y1 yLy7 y1,y3 yLy3 y1,y3
MDS b-Inconsist y1 y1Ly5y6,y7 y1,y3,y5y6 y1,y3,y5y6 v1,y3,y5,y6
c-Network - y2,y4 3 3 3
a-DevFail y1 y1,y4 - v1,y8 -
OSS#2 | b-Inconsist y1 v1,y4,y5,y6 y5 y1,y5,y8 y5
c-Network - 4 - ¥2,y3 -
three a-DevFail y1 y1,y4 y1,y8 y1,y8 y1,y8
OSSes | b-Inconsist y1 yLy4y5y6  yLy5y8 yLy3,y5 y1,y5,y8
c-Network - 4 ¥2,y3 v2,y3 y2,y3
MDS | a-DevFail y1 y1Ly7 y1y3 y1,y8 y1y3
+ b-Inconsist y1 y1Ly5y6,y7 y1l,y3,y5y6 y1,95y6,y8 v1,y3,y5,y6
OSS#2 | c-Network - 2,54 3 y2,y3 3
Type Meaning Message Example
y1 Disconnection ...genops.c:1244:class_disconnect() disconnect: cookie 0x923a4db81e68...
2 MGS Recovery failed ...ptlrpc_connect_interpret() recovery of MGS on MGC 192.x.x.x...failed...
3 MDS Recovery failed ...ptlrpc_connect_interpret() recovery of lustre-MDT0000_UUID...failed...
v4 OSS Recovery failed ...ptlrpc_connect_interpret() recovery of lustre-OST0001_UUID...failed...
5 Log updating failed ...updating log 2 succeed 1 fail [...lustre — sptirpc(fail)...
6 Lock service failed ...1dIm_request.c:1317: ldlm_cli_update_pool()...@Zero SLV or Limit found...
y7 Failing over MDT ...obd_config.c:652:class_cleanup() Failing over lustre-MDT0000...
8 Failing over OST ...obd_config.c:652:class_cleanup() Failing over lustre-OST0001...

Table 4: Logs Generated in the Debug Buffer of Lustre After Faults. The“Node(s) Affected” column shows the node(s) to which the faults

«

are injected. “=” means no error message is reported. “y1” to “y8” are eight types of messages reported in the logs. The meaning of each type is
shown at the bottom part of the table. The “Message Example” column shows a snippet of each type of messages adapted from the logs.

4.5 Logs of LFSCK

Besides Lustre’s internal logs, LFSCK also generates extensive status
logs in the /proc pseudo file system on the MDS and OSS nodes [21].
We analyze these logs in this section.

There are three types of LESCK logs, each of which corresponds
to one major component of LFSCK: (1) oi_scrub log (oi): linearly
scanning all objects on the local device and verifying object in-
dexes; (2) layout log (lo): checking the regular striped file lay-
out and verifying the consistency between MDT and OSTs; (3)
namespace log (ns): checking the local/global namespace consis-
tency inside/among MDT(s). In addition, the debug buffer of Lus-
tre may also record the activities of LFSCK (via 1ctl set_param
printk= +1fsck), which we refer to as debug buffer log. On the
MDS node, all types of logs are available. On OSS nodes, the names-
pace log is not available as it is irrelevant to OSTs. None of the
LFSCK logs are generated on MGS.

Table 5 summarizes the logs (i.e., “0i”, “lo”, “ns”) generated on
different nodes after running LFSCK. We find that the debug buffer
log is always consistent with the other logs, so we omit it here.

As shown in the table, when “b-Inconsist” happens on MDS,
LFSCK may report that three orphans have been repaired (i.e.,
“repaired”) in the “lo” log. This is because the corruption and repair
of the local file system on MDS may lead to inconsistency between
the MDS and the three OSSes. Based on the log, LFSCK is able to

identify and repair the orphan objects on OSSes which do not have
corresponding parents (on MDS) correctly.

When “a-DevFail” happens on MDS or OSS node(s), all LFSCK
logs on the affected node(s) disappear from the /proc file system,
and thus are unavailable (i.e., “-”).

When LFSCK hangs (i.e., “hang” in Table 2), the logs may keep
showing that it is in scanning. Internally, LFSCK uses a two-phase
scanning to check and repair inconsistencies thoroughly [21], and
the “lo” and “ns” logs may further show the scanning phases (i.e.,
“scan-1” and “scan-2"). In these scanning cases, we kill LFSCK after
waiting for one hour without observing any progress.

In most cases (other than the two “repaired” cases), the logs are
simply about LFSCK’s progress (e.g., “init”, “scan-1, “scan”, “comp”).
The corresponding debug buffer log (not shown) is relatively more
informative. For example, it may show “layout Ifsck slave queries
master” on the OSS node, which describes the internal operations of
LFSCK. Nevertheless, we find that these logs are still mostly about
its execution status, instead of the potential issues of Lustre.

In summary, we find that LFSCK’s logs is less informative for
diagnosing problems comparing to Lustre’s internal logs (§4.4). To
guarantee that we do not miss any valuable error reports, we run
LFSCK before injecting the faults to generate a set of logs under
the normal condition. Then, we compare the logs of the two runs
of LFSCK (i.e., with and without faults), and examine the difference.



Node(s) Fault Logs on MDS Logs on OSS#1 | Logs on OSS#2 | Logs on OSS#3
Affected Models oi lo ns oi lo oi lo oi lo
a-DevFail | comp comp comp | comp comp |comp comp |comp comp
MGS b-Inconsist | comp comp comp | comp comp | comp comp | comp comp
c-Network | comp comp comp | comp comp |comp comp |comp comp
a-DevFail - - - init init init init init init
MDS b-Inconsist | comp repaired comp | comp comp | comp comp | comp comp
c-Network | init init init init init init init init init
a-DevFail | scan scan-1 init comp scan-2 - - comp scan-2
OSS#2 | b-Inconsist | comp  scan-1 scan-1 | comp scan-2 | comp comp | comp scan-2
c-Network | scan scan-1 init | comp scan-2 | init init | comp scan-2
three a-DevFail | scan scan-1 init - - - - - -
OSSes | b-Inconsist | comp  scan-1 scan-1 | comp comp | comp comp | comp comp
c-Network | scan scan-1 init init init init init init init
MDS a-DevFail - - - init init - - init init
+ b-Inconsist | comp repaired scan-1 | comp scan-2 | comp comp | comp scan-2
OSS#2 | c-Network | init init init init init init init init init

Table 5: Logs of LFSCK on Different Nodes. The first column shows where the faults are injected. “0i”, “lo”, “ns” represent “oi_scrub log”,
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“layout log’,

5, <.

namespace log”, respectively. “comp” means the log shows LFSCK “completed”; “init” means the log shows the “init” state (no

execution of LESCK); “repaired” means the log shows “repaired three orphans”; “scan” means the log keeps showing “scanning” without making

»,

visible progress for an hour; “scan-1” means “scanning phase 17;
the debug buffer log of LFSCK as it is always consistent with the

In many cases there are no differences, except for minor updates
such as the counts of execution and the running time of LFSCK.

5 RELATED WORK

Reliability Analysis of Storage Systems. Existing methods for
testing the reliability of storage systems mainly include model
checking [20, 52], formal methods [6], and automatic testing [12,
13, 27, 34, 53]. While these techniques are effective for testing local
storage systems, applying them to large-scale PFSes remain chal-
lenging. For example, model checking still faces the state explosion
problem despite of various path reduction optimizations [20]. Also,
turning a practical system like Lustre into a controllable model
is prohibitively difficult if possible. Similarly, formally verifying
the behavior of a large-scale PFS like Lustre is almost infeasible in
practice due to the complexity. As for automatic testing, the cases
are more complicated due to the diverse testing methodologies. But
generally, most of the testing frameworks are closely tied to the OS
kernel, or only work for single-node systems. Since PFSes usually
span many nodes and have special requirements or dependency on
local systems, it is challenging to apply these existing frameworks
to PFSes. An early version of PFAULT uses iSCSI to decouple the PFS
from the analysis framework, but it can only collect I/O commands
without injecting faults for reliability analysis [4].

One recent study [11] analyzes eight popular distributed stor-
age systems and finds that none of them can consistently use re-
dundancy to recovery from file-system faults. They build a fault
injection framework called Corps, which consists of a FUSE file
system and a set of workloads and behavior-inference scripts. Since
Lustre has special requirements on local file systems (i.e., requir-
ing a patched Ext4 or ZFS), FUSE-based CoRrps cannot be directly

scan-2” means “scanning phase 2”;

[N

0i”, “lo”, “ns” logs.

» @

means the log is not available. We omit

» &«

applied to study Lustre. Also, Corps only inject two types of cor-
ruptions (i.e., zeros or junk) to a single file-system block, while
PFAULT uses three fault models to cover a wide range of real-world
failure scenarios.

Besides, many other studies have examined the bugs or failure
behaviors of local storage software and/or hardware (e.g., hard
disks [2], RAID [25], flash-based SSDs [40, 54, 55], local file sys-
tems [22]). Generally, these studies provide valuable insights on the
reliability of local storage systems, and they may help in emulating
realistic failure states of storage nodes in PFAULT.

Performance Analysis of Parallel File Systems. Due to the
prime importance of PFSes, many analysis tools have been pro-
posed by the HPC community to improve them. For example, there
is a variety of tools for instrumentation, profiling, and tracing of
10 activities, such as mpiP [48], LANL-Trace [17], HPCT-IO [41],
10T [37], and TRACE [26] and so on. While these tools are mostly
designed for improving the performance of PFSes, they may also
help in reliability. For example, Darshan [5, 9] is able to capture the
1/O characteristics of various HPC applications, including access
patterns, frequencies, and duration time. Since all I/O requests are
served by the backend PFS, these captured I/O characterization may
be used by PFAULT to further reason the behavior of the PFS and
identify the potential root causes of abnormalities observed.

Generally, these performance analysis tools are complimentary
to PFAuLT which focuses on emulating different fault models and
analyzing the failure handling of PFSes.

6 CONCLUSIONS AND FUTURE WORK

High-performance PFSes are scaling to more and more nodes and
are responsible for managing larger and larger volumes of scientific
data. As the scale and complexity keeps increasing, maintaining



consistency and data integrity under faults becomes more and more
challenging.

To address the challenge. we have introduced PFAULT, a general
framework for analyzing the failure handling of PFSes. PFauLT
automatically captures I/O commands on all storage nodes of a
target PFS, emulates realistic failure states based on well-defined
fault models, and enables examining the recoverability of the PFS
systematically. Moreover, we have applied PFAULT to study the
widely used Lustre file system. Our analysis reveals a number of
unexpected behavior of the recovery utility of Lustre (i.e., LFSCK),
including a resource leak problem.

PFauLT is designed to be deployable in practice. For instance,
the PFS Worker and Checker can be run through compute nodes,
and the target PFS (and other HPC software stack) can be hooked
to the Failure State Emulator (via iSCSI) without any modification.
It is expected that our study and tools (i.e., PFAULT and LeakCK)
will help improve Lustre as well as other PFSes for reliable high-
performance computing.

This research study is a critical step on our roadmap toward
achieving robust high-performance computing. In the future, we
would like to explore the automation of diagnosing and understand-
ing the root causes of the failure symptoms during the recovery.
Also, we would like to explore additional fault models to capture
more realistic failure scenarios.

Given the prime importance of PFSes in HPC systems and data
centers, this researach also calls for community’s collective efforts
in examining reliability challenges and coming up with advanced
and highly-efficient solutions. We hope this work can inspire more
research efforts along this direction. We also believe that such
a study, associated methodologies, and insights drawn from our
observations, can have a long-term impact on the design of large-
scale file systems, storage systems, and HPC systems.
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